一、分水岭算法简介
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。 分水岭算法一般和区域生长法或聚类分析法相结合。分水岭算法一般用于分割感兴趣的图像区域,应用如细胞边界的分割,分割出相片中的头像等等。
二、分水岭用opencv函数实现
分水岭算法在opencv2库中实现函数是:
头文件:#include <opencv2/imgproc/imgproc.hpp>
函数声明:CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
参数:
InputArray image 要分割的原始图片
InputOutputArray markers 标记数组,非零的32位有符号的int型数组,用于标记出要分割的关键点,进而区域生长,扩展出感兴趣的区域。
实现程序: watershedSegmenter.h
#if !defined WATERSHS #define WATERSHS #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> class WatershedSegmenter { private: cv::Mat markers; public: void setMarkers(const cv::Mat& markerImage) { // Convert to image of ints markerImage.convertTo(markers,CV_32S); } cv::Mat process(const cv::Mat &image) { // Apply watershed cv::watershed(image,markers); return markers; } // Return result in the form of an image cv::Mat getSegmentation() { cv::Mat tmp; // all segment with label higher than 255 // will be assigned value 255 markers.convertTo(tmp,CV_8U); return tmp; } // Return watershed in the form of an image cv::Mat getWatersheds() { cv::Mat tmp; markers.convertTo(tmp,CV_8U,255,255); return tmp; } }; #endif
segment.cpp
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include "watershedSegmentation.h" int main() { // Read input image cv::Mat image= cv::imread("group.jpg"); if (!image.data) return 0; // Display the image cv::namedWindow("Original Image"); cv::imshow("Original Image",image); // Get the binary map cv::Mat binary; binary= cv::imread("binary.bmp",0); // Display the binary image cv::namedWindow("Binary Image"); cv::imshow("Binary Image",binary); // Eliminate noise and smaller objects cv::Mat fg; cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6); // Display the foreground image cv::namedWindow("Foreground Image"); cv::imshow("Foreground Image",fg); cv::imwrite("ForegroundImage.jpg",fg); // Identify image pixels without objects cv::Mat bg; cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6); cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV); // Display the background image cv::namedWindow("Background Image"); cv::imshow("Background Image",bg); cv::imwrite("BackgroundImage.jpg",bg); // Show markers image cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0)); markers= fg+bg; cv::namedWindow("Markers"); cv::imshow("Markers",markers); cv::imwrite("Markers.jpg",markers); // Create watershed segmentation object WatershedSegmenter segmenter; // Set markers and process segmenter.setMarkers(markers); segmenter.process(image); // Display segmentation result cv::namedWindow("Segmentation"); cv::imshow("Segmentation",segmenter.getSegmentation()); cv::imwrite("Segmentation.jpg",segmenter.getSegmentation()); // Display watersheds cv::namedWindow("Watersheds"); cv::imshow("Watersheds",segmenter.getWatersheds()); cv::imwrite("Watersheds.jpg",segmenter.getWatersheds()); // Open another image image= cv::imread("tower.jpg"); // Identify background pixels cv::Mat imageMask(image.size(),CV_8U,cv::Scalar(0)); cv::rectangle(imageMask,cv::Point(5,5),cv::Point(image.cols-5,image.rows-5),cv::Scalar(255),3); // Identify foreground pixels (in the middle of the image) cv::rectangle(imageMask,cv::Point(image.cols/2-10,image.rows/2-10), cv::Point(image.cols/2+10,image.rows/2+10),cv::Scalar(1),10); // Set markers and process segmenter.setMarkers(imageMask); segmenter.process(image); // Display the image with markers cv::rectangle(image,cv::Point(5,5),cv::Point(image.cols-5,image.rows-5),cv::Scalar(255,255,255),3); cv::rectangle(image,cv::Point(image.cols/2-10,image.rows/2-10), cv::Point(image.cols/2+10,image.rows/2+10),cv::Scalar(1,1,1),10); cv::namedWindow("Image with marker"); cv::imshow("Image with marker",image); cv::imwrite("Image with marker.jpg",image); // Display watersheds cv::namedWindow("Watersheds of foreground object"); cv::imshow("Watersheds of foreground object",segmenter.getWatersheds()); cv::imwrite("Watersheds of foreground object.jpg",segmenter.getWatersheds()); cv::waitKey(); return 0; }
程序运行结果:
group.jpg
binary.bmp
fg
bg
markers
Segmentation
Watersheds
tower.jpg
Image with marker.jpg
Watersheds of foreground object.jpg
收藏的用户(0) X
正在加载信息~
推荐阅读
最新回复 (0)
站点信息
- 文章2302
- 用户1336
- 访客10970171
每日一句
Qingming Festival invites us to honor ancestors with quiet reflection and respect.
清明节邀请我们以静思与敬意祭奠祖先。
清明节邀请我们以静思与敬意祭奠祖先。
新会员