贝塞尔曲线 贝塞尔曲线(The Bézier Curves),是一种在计算机图形学中相当重要的参数曲线(2D,3D的称为曲面)。贝塞尔曲线于1962年,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所发表,他运用贝塞尔曲线来为汽车的主体进行设计。
代码实现其实也非常简单,把公式套过来直接用起来就OK了。这里我以3次曲线为例
以上是核心算法,下面是完整代码:
效果图:









代码实现其实也非常简单,把公式套过来直接用起来就OK了。这里我以3次曲线为例

for (double k = t; k <= 1 + t; k += t) {
x = (1 - k) * (1 - k) * (1 - k) * ps[0].getX() + 3 * k * (1 - k) * (1 - k) * ps[1].getX()
+ 3 * k * k * (1 - k) * ps[2].getX() + k * k * k * ps[3].getX();
y = (1 - k) * (1 - k) * (1 - k) * ps[0].getY() + 3 * k * (1 - k) * (1 - k) * ps[1].getY()
+ 3 * k * k * (1 - k) * ps[2].getY() + k * k * k * ps[3].getY();
g2.drawOval((int) x, (int) y, 1, 1);
}以上是核心算法,下面是完整代码:
package com.opentcs.customization;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Point2D;
import javax.swing.JFrame;
import javax.swing.JPanel;
public class BezierDemo extends JPanel implements MouseListener, MouseMotionListener {
private static final long serialVersionUID = 1L;
private Point2D[] ps;
private Ellipse2D.Double[] ellipse;
private static final double SIDELENGTH = 8;
private int numPoints;
private double t = 0.002;
public BezierDemo() {
numPoints = 0;
ps = new Point2D[4];
ellipse = new Ellipse2D.Double[4];
this.addMouseListener(this);
this.addMouseMotionListener(this);
}
@Override
protected void paintComponent(Graphics g) {
// TODO Auto-generated method stub
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2.setColor(Color.BLUE);
for (int i = 0; i < numPoints; i++) { // 绘制圆点 if (i > 0 && i < (numPoints - 1)) { g2.fill(ellipse[i]); } else { g2.draw(ellipse[i]); } // 绘制点之间的连接线 if (numPoints > 1 && i < (numPoints - 1))
g2.drawLine((int) ps[i].getX(), (int) ps[i].getY(), (int) ps[i + 1].getX(), (int) ps[i + 1].getY());
}
if (numPoints == 4) {
double x, y;
g2.setColor(Color.RED);
for (double k = t; k <= 1 + t; k += t) {
x = (1 - k) * (1 - k) * (1 - k) * ps[0].getX() + 3 * k * (1 - k) * (1 - k) * ps[1].getX()
+ 3 * k * k * (1 - k) * ps[2].getX() + k * k * k * ps[3].getX();
y = (1 - k) * (1 - k) * (1 - k) * ps[0].getY() + 3 * k * (1 - k) * (1 - k) * ps[1].getY()
+ 3 * k * k * (1 - k) * ps[2].getY() + k * k * k * ps[3].getY();
g2.drawOval((int) x, (int) y, 1, 1);
}
}
}
@Override
public Dimension getPreferredSize() {
// TODO Auto-generated method stub
return new Dimension(600, 600);
}
public static void main(String[] agrs) {
JFrame f = new JFrame();
BezierDemo t2 = new BezierDemo();
f.add(t2);
f.pack();
f.setVisible(true);
f.setLocationRelativeTo(null);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
@Override
public void mouseClicked(MouseEvent e) {
// TODO Auto-generated method stub
if (numPoints < 4) {
double x = e.getX();
double y = e.getY();
ps[numPoints] = new Point2D.Double(x, y);
Ellipse2D.Double current = new Ellipse2D.Double(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH,
SIDELENGTH);
ellipse[numPoints] = current;
numPoints++;
repaint();
}
}
private int flag = -1;
@Override
public void mousePressed(MouseEvent e) {
// TODO Auto-generated method stub
if (!find((Point2D) e.getPoint()))
flag = -1;
}
private boolean find(Point2D p) {
for (int i = 0; i < numPoints; i++) {
if (ellipse[i].contains(p)) {
flag = i;
return true;
}
}
return false;
}
@Override
public void mouseReleased(MouseEvent e) {
// TODO Auto-generated method stub
}
@Override
public void mouseEntered(MouseEvent e) {
// TODO Auto-generated method stub
}
@Override
public void mouseExited(MouseEvent e) {
// TODO Auto-generated method stub
}
@Override
public void mouseDragged(MouseEvent e) {
// TODO Auto-generated method stub
if (flag < 5 && flag >= 0) {
double x = e.getX();
double y = e.getY();
ps[flag] = new Point2D.Double(x, y);
Ellipse2D.Double current = new Ellipse2D.Double(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH,
SIDELENGTH);
ellipse[flag] = current;
repaint();
}
}
@Override
public void mouseMoved(MouseEvent e) {
// TODO Auto-generated method stub
}
}
效果图:

收藏的用户(0) X
正在加载信息~
推荐阅读
最新回复 (1)
-
if (numPoints == 3) { double x, y; g2.setColor(Color.RED); for (double k = t; k <= 1 + t; k += t) { double tt = 1 - k; x = Math.pow(tt, 2) * ps[0].getX() + 2 * k * tt * ps[1].getX() + Math.pow(k, 2) * ps[2].getX(); y = Math.pow(tt, 2) * ps[0].getY() + 2 * k * tt * ps[1].getY() + Math.pow(k, 2) * ps[2].getY(); g2.drawOval((int) x, (int) y, 1, 1); } }二次函数稍微,用Math函数实现,看起来简洁一点。
站点信息
- 文章2314
- 用户1336
- 访客11813325
每日一句
Let's seek joy in the simple, quiet moments.
让我们在简单宁静的时刻中寻找快乐。
让我们在简单宁静的时刻中寻找快乐。