给定的二维平面上的N个节点表示为(x i,y i)。如果节点之间的曼哈顿距离为1,则称这些节点已连接。您可以连接两个未连接的节点,而这两个节点之间的距离是欧式距离。任务是连接图,以使每个节点都有一条从任何节点到其路径的路径,且成本最低。
例子:
Input: N = 3, edges[][] = {{1, 1}, {1, 1}, {2, 2}, {3, 2}} Output: 1.41421 Since (2, 2) and (2, 3) are already connected. So we try to connect either (1, 1) with (2, 2) or (1, 1) with (2, 3) but (1, 1) with (2, 2) yields the minimum cost. Input: N = 3, edges[][] = {{1, 1}, {2, 2}, {3, 3}} Output: 2.82843
方法:蛮力的方法是每个节点与所有其他节点和类似的其他连接ñ节点,但在时间复杂度将是最坏的情况下ñ ñ。
另一种方法是找到具有欧几里得距离的每对顶点的成本,并且那些相连的对的成本为0。
在知道每一对的代价之后,我们将对最小生成树应用Kruskal算法,它将产生连接图的最小代价。请注意,对于Kruskal算法,您必须具有不相交集并集(DSU)的知识。
下面是上述方法的实现:
// C++ implentation of the approach #include <bits/stdc++.h> using namespace std; // Max number of nodes given const int N = 500 + 10; // arr is the parent array // sz is the size of the // subtree in DSU int arr[N], sz[N]; // Function to initilize the parent // and size array for DSU void initialize() { for (int i = 1; i < N; ++i) { arr[i] = i; sz[i] = 1; } } // Function to return the // parent of the node int root(int i) { while (arr[i] != i) i = arr[i]; return i; } // Function to perform the // merge operation void unin(int a, int b) { a = root(a); b = root(b); if (a != b) { if (sz[a] < sz[b]) swap(a, b); sz[a] += sz[b]; arr[b] = a; } } // Function to return the minimum cost required double minCost(vector<pair<int, int> >& p) { // Number of points int n = (int)p.size(); // To store the cost of every possible pair // as { cost, {to, from}}. vector<pair<double, pair<int, int> > > cost; // Calculating the cost of every possible pair for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (i != j) { // Getting Manhattan distance int x = abs(p[i].first - p[j].first) + abs(p[i].second - p[j].second); // If the distance is 1 the cost is 0 // or already connected if (x == 1) { cost.push_back({ 0, { i + 1, j + 1 } }); cost.push_back({ 0, { j + 1, i + 1 } }); } else { // Calculating the euclidean distance int a = p[i].first - p[j].first; int b = p[i].second - p[j].second; a *= a; b *= b; double d = sqrt(a + b); cost.push_back({ d, { i + 1, j + 1 } }); cost.push_back({ d, { j + 1, i + 1 } }); } } } } // Krushkal Algorithm for Minimum // spanning tree sort(cost.begin(), cost.end()); // To initialize the size and // parent array initialize(); double ans = 0.00; for (auto i : cost) { double c = i.first; int a = i.second.first; int b = i.second.second; // If the parents are different if (root(a) != root(b)) { unin(a, b); ans += c; } } return ans; } // Driver code int main() { // Vector pairs of points vector<pair<int, int> > points = { { 1, 1 }, { 2, 2 }, { 2, 3 } }; // Function calling and printing // the answer cout << minCost(points); return 0; }
输出:
1.41421
收藏的用户(0) X
正在加载信息~
推荐阅读
最新回复 (0)
站点信息
- 文章2305
- 用户1336
- 访客11456119
每日一句
Talent without working hard is nothing.
没有努力,天份不代表什么。
没有努力,天份不代表什么。
MySQL 数据库优化
This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its de
免ROOT实现模拟点击任意位置
Mobaxterm终端神器
CreateProcessW要注意的细节问题
Autonomous NAT Traversal
【教程】win10 彻底卸载edge浏览器
eclipse工程基于Xposed的一个简单Hook
排名前5的开源在线机器学习
Mac OS最简单及(Karabiner)快捷键设置
发一款C++编写的麻将
VMware NAT端口映射外网访问虚拟机linux
独家发布最新可用My-AutoPost——wordpress 采集器
新会员